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Cedex, France 
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Abstract. Monte Carlo calculations are used to investigate some statistical properties of 
random walks on fractal structures. Two kinds of lattices are used: the Sierpinski gasket 
and the infinite percolation cluster, in two dimensions. Among other problems, we study: 
( i )  the range RN of the walker (number of distinct visited sites during N steps): average 
value S,, variance and asymptotic distribution; (ii) renewal theory (return to the 
original site): probability of return P,(N), mean number of returns v , ~ .  

The probability distribution of the walker position P(N,  R) after N steps is discussed. 
The asymptotic behaviour ( N  >> 1) of these quantities exhibits power laws, with associated 
exponents. The numerical values of these exponents are in good agreement with recent 
theoretical predictions (Alexander/Orbach and Rammal/Toulouse). 

1. Introduction 

Recently, there has been a good deal of interest in fractal structures (Mandelbrot 
1977), mainly due to their dilation symmetry (scaling invariance) in contrast to 
translationally invariant systems. A random walk in free space, linear polymers and 
percolation clusters at threshold are just a few examples of fractals. In the latter case, 
recent observations by several authors (Voss et a1 1982, Kapitulnik and Deutscher 
1982) show the importance of fractals in representing these disordered structures. 
From this viewpoint, fractals are expected to bridge the gap between crystalline 
materials and disordered systems. In general, two kinds of fractals can be distinguished: 
deterministic fractals (self-similar) such as the family of the Sierpinski gaskets (Gefen 
et al 1981, Rammal and Toulouse 1982) and random fractals (statistically self-similar) 
such as the percolation clusters (Stauffer 1979, 1981, Deutscher 1981). 

Whereas Euclidean space is well characterised by one space dimension d, fractals 
require the definition of (at least) three dimensions: d, the dimension of the embedding 
Euclidean space, (I, the fractal dimension (Mandelbrot 1 9 7 7 ,  d‘, the spectral dimension 

harmonic excitations (elastic vibrations for instance) close to w - 0. In a recent 
publication (Rammal and Toulouse 1983, referred to hereafter as I) the importance 
of the spectral dimensionality d’ in many physical problems was investigated: classical 
diffusion, quantum localisation, self avoidance etc. In particular, a number of interesting 
predictions relative to the diffusion on fractal spaces were stated in I: range of a random 
walk, renewal theory, etc. One of the objects of the present work is to check numerically 
some of the predictions given in I. New results relative to random walk statistics (RW) 

(Alexander and Orbach 1982). In general, d’ describes the power law p ( w )  - w d - l  of 
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on fractals, such as the spatial distribution, mean first-passage time, zero-crossing set, 
etc are also stated, as an extension of those of I. 

This paper is organised as follows. In § 2, numerical results obtained for RWS on 
the Sierpinski gasket in two dimensions are reported. We focus our attention on three 
statistical properties of RWS. The first is the range R N  of the walk (number of distinct 
visited sites during N steps). In particular, we investigate the average SN = (R, ) ,  the 
variance I& of RN and the asymptotic distribution of RN, at N >> 1. For instance, we 
find that S ,  and vN are given at N >> 1 by the same power of N with the exponent 
< / 2 .  It is argued that this particular behaviour of R,v is common to all fractals with 
d < 2. The second property of the RWS is relative to the renewal theory: probability 
Po(N)  and number v, of returns to the original site of the walk, after N steps. The 
result stated in paper I, Po(N)  - N-d’2 ,  is verified with a good numerical accuracy 
(less than 1%). The third property investigated in 0 2 concerns the spatial distribution 
of the walk. We show in particular the consistency of the scaling behaviour of this 
distribution (Rammal and Vannimenus 1983) with the obtained numerical results. 
New results, relative to the mean first-passage time, zero-crossing set, etc, are deduced 
from the spatial distribution of the RW. 

In § 3, we investigate the same properties as in 9 2 for RWS on the percolation 
clusters (at threshold) on a square lattice. The scaling behaviour for S,, Po(N),  etc, 
stated in I, is recovered, from which we deduce the value of the exponent d Within 
numerical accur_acy, a relatively good agreement with the conjecture (Alexander and 
Orbach 1982) d = $ is observed. In addition to the above statistics, we investigate also 
the behaviour of the ‘open frontier’ defined in I, in the asymptotic regime N >> 1. 
Section 4 is mainly devoted to discussion of open problems, and the possible extension 
of this work. In particular, we argue that RW statistics provide an alternative method 
for the calculation of dynamical exponents, such as the conductivity exponent t ,  in 
percolation problems. 

2. Random walk statistics on the Sierpinski gasket 

The Sierpinski gaskets form a family of self-similar structures, which can be built in 
any Euclidean dimension d (see figure 1 for d = 2) and which have been applied to 
studies (Gefen et a1 1981, Rammal and Toulouse 1982, Alexander 1983), because it 
lends itself particularly conveniently to scaling computations. At stage n, the total 

A l l l l  

A 
n=O n.1 n.2 

Figure 1. The Sierpinski gasket ( d  = 2 )  at successive stages: n = 0, 1 and 2 .  Stage 
n + 1 is obtained by the juxtaposition of three n-stage structures. For n = 1 and n = 2, we 
have shown the labelling of the plaquettes (up triangles) used in the site coding. 
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number of sites in the gasket is given by N, = ( d  + 1)( 1 + ( d  + 1)")/2. The scaling factor 
of the gasket is b = 2  and the fractal dimensionality is (Gefen et a1 1981) 6= 
In( d + l ) / ln  2. The spectral dimensionality 2 was found in I: d'= 2 In( d + l ) / ln(d + 3). 
In the following, we shall study the RWS on the gasket at d = 2, in order to check some 
statistical properties of RWS on this non-trivial fractal structure. 

2.1. Labelling procedure 

Starting from the lowest left corner of the gasket, a natural coding of sites is easily 
obtained, using p-adic numbers (Bachman 1964, Mahler 1973). We shall illustrate 
briefly this coding at d = 2. Each up triangle (plaquette) is labelled on the gasket at 
stage n by a word of n elements: ( x I x 2 x 3 .  . . x, )  where xi  = 0 , l  or 2 (1 6 i n )  are 
defined recursively from stage n to stage n + 1. Beside the corners, every plaquette 
has three neighbouring ones, which labels are trivially found using the above coding. 
In this way, the sites of the gasket are labelled with the two plaquette labels sharing 
the considered site. These labels are the 'normal' coordinates on the gasket, in 
opposition to Cartesian coordinates usually used in Euclidean lattices. 

Starting from an arbitrary site on the lattice, a RW trajectory is generated by a 
standard Monte Carlo procedure. The lattice size (i.e. n )  was chosen to be much 
larger than the span of the walks ( n  > lo ) ,  so as to avoid end effects. A large number 
of steps N for each trajectory was needed to reach the asymptotic regime, and sampling 
over a very large number of trajectories was used to obtain accurate results. 

2.2. Range of the random walk 

The range of a RW RN is defined as the number of distinct sites visited up to step N. 
The behaviour of the expectation value SN = ( R N )  is well known on Euclidean lattices 
of dimension d (Montroll and West 1979). For instance, 

S ,  = (8/i7)1/2N'/2 at d = l ,  SN 2: Nl ln  N at d = 2  

S N - N  at d 2 3. (1) 

The numerical results obtained for the gasket at d = 2 are shown in figure 2. Averages 
are taken over 4 X lo3 walks of N s 500 steps. The asymptotic region is reached for 

In  N 

Figure 2. Plot of In S ,  against In N for a set of 4 x lo4 walks of N 
the Sierpinski gasket ( s G ) .  

500 steps each, for 
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N a 5 0 ,  where a power law is observed. The deduced value of the exponent is 
0 .6 j2  f 0.005, in very good agreement with the predicted value ( S N  - Nd’*)  given in 
I: d / 2  = 0.682 60. 

The same results were used to extract the behaviour of the variance of the random 
variable RN : 

U;, =Var RN = ( R k ) - ( R N J 2 .  (2) 

The variance of RN increases with N, showing a power law as a function of N. More 
precisely, we have used the ratio p defined by 

p ( N )  = (Var R N ) l i 2 / S N  (3) 

N 

Figure 3. Plot of the ratio p ( N )  = (Var R,v)l’Z/S,w as a function of N, for the SG. 

to study the asymptotic behaviour of Var RN The obtained results are shown in figure 
3. After a transient regime, p as a function of N converges towards a limiting value 
given by p = 0.244 f 0.002. This special behaviour 

Var RN - N d  N >> 1 (4) 

is known to occur at d = 1 at long times (Feller 1951). The obtained numerical value 
of the ratio p at d = 1 is p I  = 0.298 f 0.002. Such behaviour of the RW on fractals with 
d’ < 2 is to be contrasted with that on Euclidean space of dimension d 5 2. In fact, the 
asymptotic behaviour of Var RN in these cases is well known (Jain and Pruitt 1971): 

Var RN = N2/ln4(N) and p z ( N )  --. l / ln  N a t d = 2  ( 5 )  

Var RN L1 N In N and p 3 ( N )  =(In N / N ) * ’ *  a t d = 3 .  (6) 

The common behaviour at d = 1 and d = 2 of the family of the Sierpinski gaskets is 
expected to occur for every value of d. The constant value of the ratio p is expccted 
to be a decreasing function of d,  reaching the value p = 0 only at d = CO where d = 2. 
We conjecture that limN+m p ( F )  exists and remains finite,_for every fractal structure 
with a spectral dimensionality d < 2. For structures with d 3 2, this limiting value of 
p ( N )  is expected to be zero. It will b_e interesting to check this conjecture numerically 
on fractals with different values of d. 

The con_jectured behaviour of p ( N )  suggests that the limiting law of RN is not 
normal at d < 2. Such behaviour is known in the case of a linear chain (2 = d = d = 1). 
The reduced variable x=RN/SN is known (Feller 1951, Jain and Pruitt 1972) to 
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Figure 4. Successive distributions P ( x )  of the ratio x = R N / S N  for increasing values of N. 
( a ) ,  N=300, SN=65.16; ( b ) ,  N=350, SN=72.38; (c). N=400, SN=79.44; ( d ) , N =  
420, SN=81.85;  (e), N=440, SN=84.44; ( f ) ,  N=460,  SN=87.02; (g) N=480, SN= 
89.46; ( h ) ,  N = 500, SN = 92.06; for the SG. 
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converge in distribution to a proper law. The limiting law is that of 

where Y ( t )  is standard one-dimensional Brownian motion. 
According to the above conjecture relative to Var RN at d <  2 ,  we expect that a 

similar behaviour of the distribution of x must occur on fractals with d<2.  More 
precisely, for these structures, the reduced variable x is expected to converge in 
distribution to a proper law. In figure 4, we show the obtained distribution P ( x )  of 
the variable x on the gasket for different values of N. This figure exhibits the limiting 
distribution of the ratio x (as for d = l),  in contrast with the Euclidean lattice case, 
where RN/& converges to 1 with a probability of unity at d 3 2 .  The presence of a 
distribution for the ratio x reveals the strong fluctuations of the random variable RN 
at N >> 1.  Such a behayiour of the RW range is then also expecJed to occur on any 
fractal structure where d < 2. A qualitative change must occur at d 3 2 as for Euclidean 
lattices. 

To summarise, the value d =  2 is not only associated with a modification in the 
asymptotic behaviour ( N  >> 1) of the expected value SN = (RN)  as was argued in I: 

SN - at 2 < 2 ,  SN-N at d>2 .  (8) 

A profound modification of the distribution of the variable RN seems also to occur at 
this ‘critical’ value of 2. For d =  2 ,  logarithmic corrections to simple power laws are 
expected in the expression of SN, Var RN, . . . , as for Euclidean lattices. 

2.3. Renewal theory 

As was shown above, the study of the range of the RW provid_es a direct measurement 
of the spectral dimensionality 2. Another measurement of d is given by the renewal 
theory (Prohorov and Rozanov 1969), which is related to the spatial distribution of 
the position of the walk. Let Tk be the time of the kth return to the origin (i.e. starting 
point of the walk), and let T~ = 0 and hk = Tk - T k - 1  be the time between the ( k  - 1)th 
and kth return: thus 

For a simple RW, the time intervals between two successive returns are independent 
identically distributed random variables. Then, the time until the nth return is the 
sum of n of these variables. When properly normalised, we then expect an asymptoti- 
cally stable distribution p ( x ;  a, p )  for this variable T, (Levy 1937, Gnedenko and 
Kolmogorov 1968). This stable law is closely related to the value of the spectral 
dimensionality d of the space. A direct connection is provided by the number v, of 
returns to the original site w within the time t =  N. The obvious relation 

(10) Pr{ v, 3 n }  = Pr{ T,, s t }  

allows us to obtain the asymptotic distribution of vr for t + a. The left-hand side of 
equation (10) is related to the cumulative time spent at the origin between time 0 and 
t. The last is expected (see equation (19) below) to scale like vl- t“  (?+CO)  with 

a = 1 4 2  at 2 < 2 ,  ( Y = O  at d > 2 .  (11) 
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From these considerations, we expect the following asymptotic behaviour of T,,: 

r,, - n"". (12) 

This means that the time until the nth return increases approximately as n""; more 
precisely, 

Pr{T,,/n"" a x } = x - "  ( 1 3 ~ )  

Pr{ V N / N "  x }  2 O( 1) at x > > l  a n d N > > l .  (13b) 

at x >> 1 and n >> 1 

Equations (11)-(13) are simply the generalisatio? of the corresponding laws at d = 1 
(Prohorov and Rozanov 1969) to fractals with d < 2. The known results for v,, are 
recovered on the Euclidean lattices. Only the parameter CY of the stable law is expected 
to be different. T , , / n ' / "  is then expected to converge to the stable law with density 
p ( x ;  a, 1). For d = 1, we recover the known results for the renewal theory, where 
a = 4 and p (  x; i, 1) is given by 

According to (12) we deduce 

at d < 2 .  

If T is the time of the first return to the original site, then T is finite with probability 
one, whereas its mean value given by (15) is infinite. This particular situation is 
common to all fractal structures with d <  2. 

In the same way, according to (1  3b), it appears that for N + CO, the number of 
returns to the origin in N steps increases proportionally to N" and not N, as might 
be expected from the recurrence property of the walk. Finally, the probability of 
return to the origin after N steps, i.e. the probability of closed walks of length N, is 
given by (Alexander and Orbach 1982, see also I) 

P,(N) - l/N"Z. (16) 

In order to check the above renewal theory, we have calculated separately the average 
number of returns vN given by vN - N" ( N  >> 1) and the probability of return after 
N steps Po(N)  given by (16). The results obtained for vN (average over 4 X lo3 walks 
with different origins w )  are shown in figure 5 .  As can be seen, the asymptotic power 
law is reached at N b 50, and the deduced value of the corresponding exponent is 
0.3229 i 0.0003, in good agreement with the predicted value a = 1 - 212. 

In figure 6, we have shown the results obtained for P,(N), in the same range of 
N values. The power law (16) is well reproduced, and the extracted exponent is 
0.681 k0.003, which is in agreement with (16). In addition to the known results for 
a' = 1, the good agreement between the predictions of the above renewal theory and 
the obtained numerical results on the gasket support the validity of this theory on 
fractals. Therefore, the renewal theory provides a new method for the measurement 
of the spectral dimensionality d The consistency of the results obtained from the 
renewal theory and those from the range theory, support fully the predictions of I and 
those given here. 
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I I I I I I 
3 1 2 3 L 5 6 

In N 

Figure 5. Plot of In uN against In N for a set of 4 X  lo4 walks of N 
denotes the mean number of returns to the origin in N steps for the SG.  

500 steps. Here, v, 

-+ 

L I 1 I I I I 
I 1 2 3 L 5 6 

In  N 

Figure 6. Plot of In Po(N)  against In N as in figure 5. Po(N)  is the probability of return 
to the origin at step N. 

2.4. Spatial distribution P(N, R) and mean first-passage time 

In addition to the range and renewal theories discussed in 5 s  2.2 and 2.3, the spatial 
distribution of the walk is another statistical property of the RW. A lot of relatively 
interesting quantities are extracted from this distribution. In the following, the distances 
on fractals are measured with the Euclidean metric of the d-dimensional embedding 
Euclidean space. Using this measure, the normalised spatial distribution of the RW 

position r, starting from a chosen site r = 0, is given by (Rammal and Vannimenus 1983) 

P(N,  r )  = ( 1 / R m / & J )  (17) 
where r = Ir} denotes the distance from the origin at step N. In (17) ,  Ro is the ‘radial’ 
extension of the walk (Alexander and Orbach 1982) R,- N v ~ w  where vRW = 2/26 is 
the exponent of the RW. The universal function f(u) of the reduced variable in (17) 
is expected to scale like 

f ( u )  -exp(-us) at u > > l  (18) 
where 6 is given (des Cloizeaux 1982) by S = 1/( 1 - vRW). In particular, Pr(r > 6) - 
6 - 1 ’ y ~ w  at 6 +  CO. 
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From (1 7), we recover easily the expression Po( N) - N-"* given by (16). The 
cumulative time spent at the origin between step 0 and N is also given by 

Accordingly, the fractal dimensionality D of the zero-crossing set is given by 

D = l - ( i / 2  if 2 < 2 ,  D=O if d > 2 .  (20) 

An interesting quantity which can be extracted from the spatial distribution P(N,  r) 
is given by the mean first-passage time TI([) at a distance 5 from the origin (Seshardi 
and West 1982). Let r ( N ,  r )  be the probability that the walker has not crossed the 
boundaries irl= 5, given that he starts at the origin at time N = 0: T ( N  = 0, N )  = S ( r )  
and x ( N ,  r = 6) = 0. The expression of Tl(6) is given by 

The scaling behaviour of TI(&) is also given by the approximation (t+ a): r ( N ,  r )  = 
P ( N ,  r ) .  Therefore, 

Tl(5) - p y R w  at €-+CO. (22) 

The result (22) which generalises the known results for Euclidean spaces (Barber and 
Ninham 1970, Feller 1971) provides a useful method for the measurement of the 
exponent uRw. No numerical results for I-,([) are given here. It will be interesting 
to check (22) for various values of 5, because it provides an indirect verification of 
the result given by ( 1  7). 

To summarise, we have investigated in this section some statistical properties relative 
to RWS on the d = 2 Sierpinski gasket. All the numerical results obtained are in very 
good agreement with theoretical predictions. This preliminary 'exercise' is to be 
considered as a first step in the study of dynamical behaviour of more complicated 
fractals, such as the percolation clusters studied in 0 3. 

3. Application: random walks on ZD percolation clusters 

In the following, we present the results of Monte Carlo calculations of RW statistics 
on percolation clusters in two dimensions at the critical point pc.  For convenience, we 
have used the bond percolation clusters, where p c = i  is known exactly (Sykes and 
Essam 1963). The clusters were generated by a cluster-growth method (Leath 1976). 
A RW was generated on these clusters. The clusters were chosen to be much larger 
than the span of the walks so as to avoid end effects. The diffusion was restricted to 
clusters larger than the span of each walk. In order to take into account this restriction, 
the notion of 'open frontier' (see below) was used in our simulation. 

As mentioned in the introduction, the infinite cluster (at a percolation threshold) 
is a fractal object, of fractal dimensionality (Stauffer 1981) 

d = d - pp/ vP 
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and spectral dimensionality (Alexander and Orbach 1982) 

d‘ = 2( dv ,  - PP)/ ( t - Pp + 2 v,) (23) 

where d is the Euclidean dimension of the lattice, v,, pp are the critical exponents of_ 
the percolation transition, and t is the conductivity exponent. As stated in I, d and d 
are the only ingredients needed to characterise the RW statistics. 

Averages over unrestricted RWS traced on a distribution of finite clusters imply a 
modification of the above results (Ben-Avraham and Havlin 1982, Gefen et a1 1983). 
In order to check the conjecture d’= $ (Alexander and Orbach 1982), we limit ourselves 
here to the restricted RW only. 

3.1. Range  of the random walk 

The average balue S ,  of the RW range RN after N steps is shown in figure 7. The 
statistics were taken over 35 x lo3 walks, with different starting points, on bond 
percolation clusters restricted to be larger than the span of each walk. The power law, 
predicted in I, is reached after N 2 100. The extracted value of the slope of this curve, 
given by the best fit, yields the value 0.65 * 0.01 for the exponent of S ,  against N. 

Figure 7. Plot of log,, S, against log,, N for a set of 35 x lo3 walks of N steps traced 
on bond percolation clusters restricted to be larger than the span of each walk. 

This value is in fair agreement with the conjectured one: d ’ / 2 = 5 .  Using the same 
data, the dispersion around the mean value SN is shown in figure 8. (Var RN)l/’ 
exhibits a power law behaviour at large N, as predicted (equation (4)). The deduced 
value of the exponent of (Var RN)l/’ is in good agreement with that of S,. In order 
to show the accuracy reached in our calculation, we have plotted the ratio 

p ( N )  = (Var R N ) l 1 2 / S N  

as a function of N, in figure 9. The fluctuation of this ratio over the large interval of 
N values is due mainly to the fluctuations in the percolation cluster shapes at threshold. 
Such a fluctuation was not present in the case of the gasket studied in § 2. Nevertheless, 
for large values of N, p ( N )  seems to fluctuate around a fixed value: p ( N  >> 1) ~ 0 . 1 ,  
in good agreement with the conjecture of 5 2. 

In I, the concept of ‘open frontier’ was introduced in the context of the range 
theory of the RW. This quantity is defined as the product of the probability of access 
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I 1 I Ids 
2 3 i 

-11 
0 

Q,: N 

Figure 8. Same plot as in figure 7 for the variance (Var  R,)’” of the random walk range 
R,. 

-0 9 l - - - - - l  

Figure 9. Variation of the ratio p ( N )  = (Var R N ) ” ’ / S N  as a function of N. 

to a fresh site dSN/dN, by the number of accessible sites after N steps EN. Given a 
RW on a fractal with d’< 2, we have EN - S N  - Nd’* (at N >> 1) and then the open 
frontier F N  after N steps is given by 

F N  5 SNdS,/dN (24) 

which must scale like 

F~ - NZ-1, ( 2 5 )  

In figure 10, we have shown the obtained results for F N  in the same interval of N 
values. As can be seen, the values of FN are smaller when compared with N. The 
best fit of the data gives the slope 0.31 kO.02 in good agreement with the conjectured 
value 2- 1 = f .  The deviation due mainly-to statistical fluctuation is of the same sign 
as that obtained in the determination of d from SN against N. 

3.2. Renewal theory 

As for the Sierpinski gasket, we have used renewal theory to obtain another estima- 
tion of the spectral dimensionality of percolation clusters d In figure 11, the probability 
of return to the origin P,(N), after N steps, is plotted against N. Averages were taken 
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1 1 

! I 

i i i i _ L .  I 
I f 3 5 

'I5 '" 

Figure 10. Plot of log,, F\ as a function of log,, N for the same set of balks as in figure 
7 (I-, denotes the open frontier at step N )  

I 

! '  
'"\ 

'\ '. 
*** .*. 

a. i 

Figure 11. Behaviour of the probability of return to the origin at step N taken from 
15 X lo3 walks. 

over 15 X IO3 walks. Clearly P,(N) exhibits the predicted power law as a function of 
N. The best fit gives the value 0.65 i 0.02 of the corresponding exponent. As for S,, 
FN and Var RN, the calculated value of the associated exponent is smaller than the 
predicted value, implied by the conjecture d = $ .  The differences in all these cases 
have the same signs, but the relative accuracy reached in our calculations is not sufficient 
to prove the exactness of the conjecture d'= :. Accuracy better than 1% in the values 
of this exponent is needed for this task. 

4. Conclusion 

In this paper, the second in a series, we have investigated some statistical properties 
of the RW on fractal structures. New analytical results were given for fractals in general: 
range theory, renewal theory and spatial distribution. Some of these results have been 
checked numerically on the Sierpinski gasket at d = 2. Using the range theory, or the 
renewal theory, we have proQosed a new numerical method, in order to extract directly 
the spectral dimensionality d. 

Our method provides a direct measurement of the spectral dimensionality in contrast 
with previous methods (Ben-Avraham and Havlin 1982) using the spatial extension 
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R o  of the RW, which involves together the fractal and spectral dimensionalities. As 
an application, we have investigated the case of the bond percolation clusters at 
threshold pc in two dimensions ( d  = 2). Up to the numerical accuracy of our calculation, 
the obtained numerical value of the spectral dimensionality d is in relatively good 
agreement with the conjectured value (Alexander and Orbach 1982) d =:. The 
extension of this study (in progress) to other values d = 3 ,  4, 5 and 6 provides a direct 
check of this conjecture on these spaces. Using the method proposed in this paper, 
new precise determinations of the conductivity exponent t ,  given by (23) at d = 3,4 ,  . . . , 
are expected from these calculations. At d = 2, the direct measurement of tke exponent 
t (Derrida and Vannimenus 1982) is in good agreement with the value d = 4. 
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